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Abstract

We show that the optimum operation of one heat exchanger is the operation that is known since long from ex-
perience, namely the one given by certain counter-current flows. The result is according to the principle of equipartition
of forces (EoF). The principle of equipartition of forces poses ideal boundary conditions for operation. The boundary
conditions may not be realizable in practice, but give a lower bound on the entropy production of the heat exchange
process, and thus a measure on the efficiency of the process. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Bejan [3] has discussed the design of a wide variety of
heat exchangers that operate with minimum entropy
production or maximum second law efficiency. This
work is also concerned with heat exchange at minimum
entropy production. We shall not, however, find the
entropy production for given boundary conditions, as
Bejan [3] does. We shall determine (ideal) boundary
conditions that are compatible with a state of minimum
entropy production for a given duty.

Our problem must not be confused with the typical
industrial problem; that is to find the minimum area of
heat exchange by varying the flow rate and the outlet
temperature of the coolant. This question has its direct
answer by solving the energy balance. We shall instead
first find ideal boundary conditions from the second law
of thermodynamics. The energy balance is next applied
in order to realize the ideal conditions. It is of interest to
study the ideal heat exchange process, to see how far it is
possible to increase the second law efficiency of heat
exchange.

The problem we raise, was solved on general grounds
by Sauar et al. [14]. Minimum entropy production for a
process with a given production (duty), was obtained
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with a constant driving force. The force was defined by
irreversible thermodynamics. A constant driving force
gives a lower bound on the process, and enables us to
measure the distance of any real process to the most
efficient one. No restriction was found for the transport
coefficient [14] provided that the optimization problem
was formulated according to the rules of irreversible
thermodynamics. The constant force represents the
boundary conditions that we are looking for. The proof
has not yet been applied to heat exchangers, which is of
interest here.

Some questions related to the proof arise from the
literature. Tondeur and Kvaalen [18], Tondeur [17]
stated that the local entropy production rate is constant
for heat exchange. Their force for heat transfer was
A(1/T). With a constant heat transfer coefficient, this is
equivalent to a constant force. It has been assumed that
the thermal conductivity must be constant in order for
the optimal driving force to be constant [17]. Haug-
Warberg [6] has recently argued the same. On the other
hand, Bejan [1,2], and Minta and Smith [9] in their
construction of a helium liquefaction cycle found that an
optimal cycle was obtained when the temperature dif-
ference between the media, over the average tempera-
ture, AT/T, was everywhere constant. In a thermal
design study of LNG heat exchangers, Fredheim [5]
found that the exergy loss in the heat exchanger was
minimum when the temperature difference between the
heating and the cooling medium was constant. Minimum

0017-9310/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(00)00321-5



2828 L. Nummedal, S. Kjelstrup | International Journal of Heat and Mass Transfer 44 (2001) 2827-2833

Nomenclature Ty Temperature of the cold fluid on the left
side of the heat exchanger (K)
A Total heat exchange area (m?) Te Temperature of the cold fluid on the right
Aco Total heat exchange area in the side of the heat exchanger (K)
co-current case (m?) Th Temperature of the hot fluid (K)
Acounter Total heat exchange area in the T Temperature of the hot fluid on the left
counter-current case (m?) side of the heat exchanger (K)
A, Heat exchange area of control volume n Tir Temperature of the hot fluid on the right
(m?) side of the heat exchanger (K)
h Enthalpy (J/kg) A(1/T), Inverse temperature difference at the left
J; Flux side of the unit (1/K)
J; Measurable heat flux (J/m’ s) A(1/T), Inverse temperature difference across
I Measurable heat flux through control control volume n (1/K)
volume 7 (J/m” s) A(1/T),, Optimal inverse temperature difference
Js Entropy flux (J/m” K) (I/K)
Lag Phenomenological heat transfer A(1/T),  Inverse temperature difference at the
coefficient (J K/m s) right side of the unit (1/K)
Iy Average phenomenological heat transfer U Heat transfer coefficient as used in the
coefficient (J K/m” s) chemical engineering literature (W /m? K)
Ly Average phenomenological entropy X Force conjugate to J;
transfer coefficient (J/m* K s) . Greek symbols
mC, Product of mass flow and heat capacity A Difference
J/K s) . .
0 Thickness of heat exchange medium
n Control volume . . .
n, Mass flux of the cold fluid (kg/m” s) including the hq.ul(.i and gas film (m)
m Mass flux of the hot fluid (kg/m” s) A Lagra}nge multiplier yvhen transferred
heat is used as constraint
p Number of control volumes Y, Lagrange multiplier when entropy flow is
(0] Heat exchanger duty (J/s) N .
used as constraint
T Temperature (K) . ) Total entropy production (J/K s)
T. Temperature of the cold fluid (K) - Local entropy production (J/K s m3)
exergy loss is equivalent to minimum entropy produc- T
tion. The first question that arises from the literature is « J: :L Cold fluid
therefore: If a constant driving force is characteristic for = _
a maximum efficiency, how is this force defined? We Ei Hot fluid

shall furthermore see in more detail that the coefficient
need not be constant for the constant force criterion to
be true, and that the force is defined completely within
the framework of irreversible thermodynamics once a
choice is made for the flux.

2. Theory
2.1. The system

The system consists of a simple heat exchanger with
two fluids separated by a thin metal plate. A sketch of
the unit and an enlarged control volume is given in
Fig. 1. The heat exchanger might for instance cool a
hydrocarbon oil with water. The fluids flow at constant
rates in the z-direction and we assume plug flow with
perfect thermal mixing in the x- and y-directions. The

~<——Metal plate

EIm NS
X T, < Hot fluid

Fig. 1. A schematic representation of the heat exchanger and
an enlarged control volume.

J< <——Cold fluid
C T T Fim T '

fluids can pass each other in co- or counter-current
fashions. The heat flux is directed from one fluid to the
other; in the x-direction, normal to the metal plate. It is
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generated by temperature differences across the two
metal-fluid films and the metal plate. We assume that
heat is transferred by convection between the fluid films
and the metal plate, and by conduction inside the metal.
In the fluids and the metal, we neglect heat conduction
in the y- and z-directions.

We shall deal with stationary states only. For a sta-
tionary state heat flux in the x-direction in the fluid films
and the metal plate, we have

d B
02 =0. (1)

This means that the measurable heat flux through the
films and the metal, J‘;, is constant with x. It can vary
with y and z.

2.2. The optimization problem

We want to minimize the total entropy production
(2) of the system at a given duty (Q). The total entropy
production is obtained by integrating the local entropy
production (o) over the volume of the wall separating
the two fluids. In general, the local entropy production is
a sum of products of fluxes and their corresponding
(conjugate) forces [4,11,12]

o= JX. (2)

Here J; is a flux and X; its conjugate force. The flux can
be a vector, e.g. heat flux, or a scalar, e.g. reaction rate.
We shall assume that the entropy production due to heat
transfer can vary, while frictional losses due to fluid flow
and turbulence are constant. Eq. (2) then simplifies to

a:J{;(y,z)%(%), (3)

where T is the absolute temperature and d/dx(1/T) is
the force conjugate to J.

We integrate Eq. (3) over the thickness of the fluid
films and the metal plate () to find the entropy pro-
duction in a control volume of infinitesimal thickness dy
and dz

Aamzj;(y,z)A(%). (4)

On the basis of the integrated form, we can write the
measurable heat flux proportional to its conjugate force

J(z) = z‘w(%), (5)

where /,, is the average coefficient for heat transfer in
the x-direction. The coefficient /,, can vary with the
properties of the liquid film, the type of material used,
and the local temperature, but according to the theory,

1,4 1s independent of the force. In the present context this

means the difference of the inverse temperatures on the
two sides. The assumption of the coefficient being in-
dependent of the force on a local level, has been con-
firmed for all practical purposes by Nettleton [10]. In the
following, we shall write the force as a function of the
flux and generalize the notation somewhat

A(%) = X(5,2) = R, 207, 2). ()

The duty of the heat exchanger is the integral of J; (v, z)
over the heat exchange area, A

0= / J/(7,2) dd. )

The total entropy production of the heat exchanger is
therefore

z:/A /60ddi:/AJ;(y,z)A(lT) dA. (8)

We can now carry out the minimization of Eq. (8) at the
duty given by Eq. (7). By using the Euler-Lagrange
method, we obtain

B 5 :
240 = ——— [ RO, )22
d/;(y,Z)[ ) 0y (v,2) ./4[ 0207 02)
+ A0/, 2)] 4y dZ' = 0, 9)

where 6 means functional derivative. We have intro-
duced the linear relation (6). Since we assume that heat
is transferred only in the x-direction in the control vol-
umes, i.e., they do not exchange heat (see Eq. (1)), we
can simplify the above expression:

o
o) (v,2)
=2R(y,2)J,(y,2) + 2= 0. (10)

Ry, 2)J (v,2) + 2y (3, 2)]

Since /,, or R(y,z) are independent of the force, we find
the derivatives in a straightforward manner. The opti-
mal thermal force that gives the lowest entropy pro-
duction at a given duty, is

X(y,z)A(%)opt—; (11)

Eq. (11) states that the difference in inverse tempera-
tures is constant at minimal entropy production
throughout the entire heat exchanger. This result was
called the principle of equipartition of forces (EoF)
[14]. The result is true regardless of the value of
l,4(v,z), or the thickness of the wall being constant or
not, provided that the transport paths are parallel. By
using the constant force, we can rewrite Eq. (7) by
combining it with Eq. (5)

(7).t e
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This equation enables us to calculate the optimal driving
force for the heat exchange process.

Experimental data for heat transfer are normally
fitted to Fourier’s law on integrated form

J) = —UAT, (13)

where U is the common heat transfer coefficient and
AT =T, — T,. It is common to assume that U is con-
stant, but it is known that it is a function of the flow
pattern (fluid films), the temperature and the heat
transfer medium. Both U and /,, are found from ex-
perimental data, and are as such not exact mathematical
functions. The same set of data can equally well be fitted
to Eq. (5). A numerical estimate for I, that makes us
able to use published values for U in a certain limited
temperature interval, is

I, = UTZ. (14)

This estimate does not make the coefficient dependent
on the force. The coefficient /,, varies with temperature,
but this does not alter the result of the optimization, as
discussed above.

So far we have focused on the measurable heat flux
and its driving force. Irreversible thermodynamics offer
alternative equivalent choices for the thermal flux-force
pair. Alternatively, we may choose the entropy flux, J,
as the flux of interest, as was done by Minta and Smith
[9]. This choice of flux must be used when the constraint
is on the total entropy that must be transferred. The
entropy production is alternatively, with J; = J] /T,

OlnT
Ox

o= —J; .
A linear relation can also be written between J; and
—0InT/dx. Following the same reasoning as above we
arrive at analogous results for the design criterion

AT 0 As
~A(nT), =)= =~ 15
(In D)oy (T> [L.dd 2 (15)
and the average coefficient of transfer
_ J.
=— S 1

The coefficient I, has a different temperature depen-
dence than that of /,,.

3. Calculations

Four different cases of heat exchange were calculated,
all at constant Q, U, n., n, (mass flows), T, and T;,. The
subscripts ¢ and h mean cold and hot fluid, while hl and
hr refer to the left and right side of the hot fluid, re-
spectively (see Fig. 1). The corresponding temperatures
for the cold fluid were T and T,.

4. Heat exchanger operated at A(1/7)

The following numerical data were chosen to dem-
onstrate typical effects. The duty of the heat exchanger
was Q=60 kW, the heat transfer coefficient was
U = 340 W/m” K, the mass flow of the hot stream was
n, = 1 kg/s, and the heat capacity was 2 kJ/kg K. The
heat capacity for the coolant (water) was 4.2 kJ/kg K
and the mass flow was n. = 0.286 kg/s. The inlet and
outlet temperatures of the hydrocarbon oil were
Tu =400 K and T, =370 K, respectively. The phe-
nomenological heat transfer coefficient, iqq, was ob-
tained from Eq. (14). The total entropy production ()
was calculated in all cases. The cases were otherwise as
follows:

1. Heat exchanger operated at co-current flow at
Ty =300 K and 7., = 350 K. The area (4.,) needed
to perform the required heat exchange (Q) was calcu-
lated.

2. Heat exchanger operated at counter-current flow at

Tu=350K and T, =300 K. The area (Acounter)
needed to perform the required heat exchange (Q)
was calculated.

3. Heat exchanger operated at A(1/T )opt, given A,, see
case 1. The inlet (7) and outlet (7;,) temperatures of
the cooling water were calculated from Eq. (11). This
case is thus an optimized case 1.

opt? giVen Acounterv
see case 2. The inlet (7)) and outlet (7;,) temperatures
of the cooling water were calculated from Eq. (11).
This case is thus an optimized case 2.

In order to solve Egs. (7) and (8) for all cases, we
discretized the integrals

P

0= ZJ‘;,nAm (17)

n=1

L 1
= quﬁA(;)ﬂA,,, (18)

n=

A=A, (19)

The discretization gives a series of p rectangular control
volumes; each of them spans the xy-plane completely.
The heat exchange area of one sub-volume (in the yz-
plane), is denoted 4,. We chose p = 10 in the calcula-
tions.

We circumvented the problem that we do not know
the temperature profiles as a function of z. Instead, we
calculated the temperature profiles corresponding to the
fluid’s enthalpy. Assuming constant heat capacities
within the actual temperature range, we used the fol-
lowing calculation procedure for cases 1 and 2. Dividing
the duty (Q) by the number of control volumes, gives
g = Q/p. The temperature profile of each of the two
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streams, in enthalpy space, is then given by the linear
relation

Ty — Ti 1 .
E(H)ZE1+(IT1)<H—§)7 l:h,C7

n=12...,p, (20)

where the subscript i can be ¢ (cold stream) or h (hot
stream) and the numbering starts from the left in Fig. 1.
The area corresponding to each control volume is found
by equating the summand of Eq. (17) to ¢. By re-
arranging and substituting J;, in the summand with
Eq. (5), we obtain

A = 0 . (21)

PUR ) (7~ 7t )

The calculations in cases 3 and 4 were carried out by a
trial and error binary search algorithm. First, the value
of A(1/T),, was guessed. Then the area needed to
perform the heat exchange, given by Q, was calculated
using the procedure given above and compared to 4., of
case 1 or Acounier Of case 2. If the calculated area was
smaller than the target value, the value of A(1/T),, was
decreased, otherwise it was increased.

A change in the value of p did not alter the results
significantly, since the temperature profiles are linear in
enthalpy space and U was kept constant; making /,,
close to constant. The number of steps may, however,
not be sufficient if 7, is allowed to vary more.

4. Results and discussion
4.1. The reference cases

The results are presented in Table 1. Consider first
cases 1 and 2, the co-current and the counter-current
modes of operation. We see that the area requirement is
19% less at counter-current than at co-current heat ex-
change for the same entropy production. Table 1 shows
that the thermodynamic driving force (A(1/7)) through

Table 1

Entropy production rate and heat exchange area from cases 1-4°

the heat exchanger is closer to constant in case 2 than in
case 1, but it is not completely constant. At the inlet of
the heat exchanger it is 3.57 x 104 K™, at the outlet the
force is 6.31 x 10~* K~!. Case 2 is therefore better from
a second law point of view than case 1. This is nothing
but a well-known engineering result.

Cases 1 and 2 serve as references for the next cases.
Neither of the cases 1 and 2 have a constant force, and
the heat exchange process they represent are therefore
not optimal according to the second law.

4.2. The lower bound on the entropy production in heat
exchange

Case 3 gives a quantitative measure for how far it is
possible to reduce the entropy production rate using the
area given by case 1, and therefore gives the lower bound
for the entropy production rate of case 1. Case 4 does
the same for case 2. The entropy production rate of case
1 can be reduced by 20%, by operating the heat ex-
changer according to the principle of EoF. For case 2,
the entropy production rate can be reduced by 1.9%;
lower than for case 1, as expected, since the forces in
case 2 are more alike.

We have in the optimum case 3 that the outlet
temperature (7 = 346 K) is lower than the outlet
temperature of case 1 (T, =350 K). The inlet tem-
perature of case 3 (7., = 324 K) is considerably higher
than that of case 1, (74 = 300 K). We know that the
energy balance is fulfilled for case 1. In case 3, the
optimum driving force has been decided, the next step
is to find fluids and fluid flows that fulfill the energy
balance for the process with the new temperatures. If
it is possible to change fluids and operating conditions
accordingly, we know that a reduction in the entropy
production is obtainable. A change of this sort may
alter the factor mC,, and thus the frictional losses in
the heat exchanger. This means that we are in a trade-
off situation. The gain by application of EoF, here the
possibility to cool at a higher temperature, must in
practice be weighted with an increased cost in pump-
ing and/or a more expensive fluid.

Cases 3 and 4 give corresponding values of area
and minimum entropy production rate. We see that

I(WK™ 4 (m?) Ty (K) T (K) AQ1/T), (K™ A(L/T), K™Y
Case 1 29.05 3.08 300 350 8.33 x 107 1.54 x 10
Case 2 29.05 2.51 350 300 3.57 x 10~* 6.31 x 10~
Case 3 23.22 3.08 346 324 3.87 x 107 3.87 x 1074
Case 4 28.51 2.51 336 315 475 x 1074 475 x 10~

2The heat exchanger duty (Q) was 60 kW and the heat transfer coefficient (U) was 340 W/m” K. The inlet and outlet temperatures of
the hot fluid were kept constant at respectively, 7j,; = 400 K and 7;,, = 370 K.
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the larger the area is, the smaller is the entropy pro-
duction rate; as expected. The relation between a
constant force and its corresponding minimum entro-
py production rate, gives a family of ideal operating
lines. We have called such lines isoforce operating
lines [8,15]. An isoforce operating line is a line that
obeys the condition given by Eq. (11). Each line
corresponds to a given duty if the area is given and
vice versa.

We can find an arbitrary isoforce line directly starting
from two inlet temperatures. The corresponding area
can next be found from enthalpy considerations. If the
boundary conditions of case 4 were realizable, we would
be able to save 19% on the area in case 1 in this manner,
and still carry out the cooling in question (possible
frictional losses not considered).

We have seen from the example above that the
phenomenological coefficient /,, need not be constant in
a valid application of the principle of EoF. Prigogine
[13], see e.g., [16], showed that a system in its stationary
state has minimum entropy production when the fluxes
are linear in the forces and the coefficients are constant.
We are speaking of a different situation. Prigogine [13]
found fully integrated equations of transfer with con-
stant coefficients, as a result of a variational principle,
while we use flux equations on a partially integrated
level and find how the production (the heat transfer)
should be distributed, in the most energy efficient way,
see [7] for further details.

The value of the coefficient decides the value of the
force, as seen from Eq. (12). By increasing the local co-
efficient, the area can be reduced. The type of flux decides
the form of the driving force, because the product of flux
and force must define the entropy production. The force
may therefore be different for a cooling machine, [1,9],
and a heat exchanger. When AT > T, the thermal driv-
ing force can be approximated with AT [5].

5. Conclusion

We have shown, using entropy production mini-
mization, why it is more advantageous, from the point
of the second law, to operate a heat exchanger in
counter-current than in co-current mode. We have
seen by analyzing a numerical example, that a family
of operating lines called isoforce operating lines may
be used to assess the efficiency of heat exchangers.
Area reductions can be obtained by replacing normal
operation by isoforce operation, but these savings
must be traded off by frictional losses or material
costs [3]. The operation that gives minimum entropy
production for parallel transport paths, namely con-
stant force operation, serves as an ideal target for
energy efficiency in the heat exchange process. In or-
der to benefit from the principle of EoF, it may be

interesting in the future to fit experimental results for

heat transfer to the flux equation that uses /,, instead
of the integrated Fourier’s law that uses U.
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